Penapisan Bakteri Penghambat Fusarium yang Diisolasi dari Cairan Kantung Semar (Nepenthes sp.)

  • Siti Meliah Pusat Penelitian Biologi, Lembaga Ilmu Pengetahuan Indonesia, Jl. Raya Jakarta-Bogor No. Km.46, Cibinong, Bogor, Jawa Barat 16911
  • Annisa Wahyu Hardiyanti Departemen Biologi, Universitas Islam Negeri Sunan Kalijaga, Jl. Laksda Adisucipto, Papringan, Caturtunggal, Depok, Sleman, Daerah Istimewa Yogyakarta 55281
  • Ni’ma Haida Departemen Biologi, Universitas Islam Negeri Sunan Kalijaga, Jl. Laksda Adisucipto, Papringan, Caturtunggal, Depok, Sleman, Daerah Istimewa Yogyakarta 55281
  • Gita Azizah Putri Program Studi Teknik Industri, Universitas Pancasila, Jl. Raya Lenteng Agung No. 56-80, Srengseng Sawah, Jakarta, Daerah Khusus Ibukota Jakarta 12640
  • Erny Qurotul Ainy Departemen Biologi, Universitas Islam Negeri Sunan Kalijaga, Jl. Laksda Adisucipto, Papringan, Caturtunggal, Depok, Sleman, Daerah Istimewa Yogyakarta 55281

Abstract

The genus Fusarium sp. is a pathogenic fungal for many cultivated plants. The bacteria isolated from monkey cup (Nepenthes sp.) fluid possess the ability to produce hydrolytic enzyme, such as chitinase which can be utilized to inhibit the growth of mycelia of pathogenic fungi. The aims of this study are to isolate bacteria from monkey cup liquid, to test their abilities to produce protease, chitinase, and cellulase, as well as their abilities to inhibit Fusarium. The bacteria were isolated using serial dilution method on Reasoner’s 2A agar medium. Enzymatic activities of bacterial isolates were determined by inoculating them on tested medium supplemented with casein protein, chitin, and cellulose, whereas their antifungal activities were assayed using a direct confrontation method between tested bacterial isolates and pathogenic fungal on Malt Extract Agar medium. Molecular identification of bacteria with antifungal activity was performed by analyzing the 16S rRNA gene sequences. Isolation process of bacteria from monkey cup fluid resulted in 99 bacterial isolates with the ability to produce either protease, chitinase, and/or cellulose enzymes. A total of 37 bacterial isolates were capable of producing at least two hydrolytic enzymes. Antifungal assay of those bacteria showed that as many as 25 isolates have the ability to inhibit the growth of Fusarium sp. Based on the analysis of 16S rRNA gene sequences revealed that those isolates were closely related to three Burkholderia species, namely B. arboris, B. contaminans, and B. rijonensis.

Keywords: antifungal, Burkholderia, chitinase, cellulaseN, epenthes, protease

Downloads

Download data is not yet available.

References

Adhikari M, Negi B, Kaushik N, Adhikari A, Al-Khedairy AA, Kaushik NK, Choi EH. 2017. T-2 mycotoxin: toxicological effects and decontamination strategies. Oncotarget. 8(20): 3393333952. https:// doi.org/10.18632/oncotarget.15422

Amini J, Agapoor Z, Ashengroph M. 2016. Evaluation of Streptomyces spp. against Fusarium oxysporum f. sp. ciceris for the management of chickpea wilt. Journal of Plant Protection Research. 56(3): 257264. https:// doi.org/10.1515/jppr-2016-0038

Bhore SJ, Komathi V, Kandasamy KI. 2013. Diversity of endophytic bacteria in medicinally important Nepenthes species. Journal of Natural Science, Biology and Medicine. 4(2): 431434. https://doi.org/ 10.4103/0976-9668.117022

Bubici G, Kaushal M, Prigigallo MI, Gomez-Lama Cabanaz C, Mercado-Blanco J. 2019. Biological control agents against fusarium wilt of banana. Frontiers in Microbiology. 10: 133. https:// doi.org/10.3389/fmicb.2019.01290

Buch F, Rott M, Rottloff S, Paetz C, HIlke I, Raessler M, Mithofer A. 2013. Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth. Annals of Botany. 111(3): 375383. https://doi.org/10.1093/aob/mcs287

Chan XY, Hong KW, Yin WF, Chan KG. 2016. Microbiome and biocatalytic bacteria in monkey cup (Nepenthes pitcher) digestive fluid. Scientific Reports. 6(1): 110. https://doi.org/10.1038/ srep20016

Chou LY, Clarke CM, Dykes GA. 2014. Bacterial communities associated with the pitcher fluids of three Nepenthes (Nepenthaceae) pitcher plant species growing in the wild. Archives of Microbiology. 196(10): 709717. https://doi.org/ 10.1007/s00203-014-1011-1

Cordova-Kreylos AL, Fernandez LE, Koivunen M, Yang A, Flor-Weiler L, Marrone PG. 2013. Isolation and characterization of Burkholderia rinojensis sp. nov., a non-Burkholderia cepacia complex soil bacterium with insecticidal and miticidal activities. Applied and Environmental Microbiology. 79(24): 76697678. https://doi.org/10.1128/AEM.02365-13

Dinolfo MI, Castañares E, Stenglein SA. 2017. Fusarium-plant interaction: state of the art-a review. Plant Protection Science. 53(2): 6170. https://doi.org/10.17221/182/2015-PPS

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 32(5): 17921797. https://doi.org/10.1093/nar/gkh340

Eilenberg H, Pnini-Cohen S, Rahamin Y, Sionov E, Segal E, Carmeli S, Zilberstein A. 2010. Induced production of antifungal naphthoquinones in the pitchers of the carnivorous plant Nepenthes khasiana. Journal of Experimental Botany. 61(3): 911922. https://doi.org/10.1093/jxb/erp359

Elshafie HS, Camele I, Racioppi R, Scranol L, Lacobellis NS, Bufo SA. 2012. In vitro antifungal activity of Burkholderia gladioli pv. agaricicola against some phytopathogenic fungi. International Journal of Molecular Sciences. 13(12): 1629116302. https://doi.org/10.3390/ijms1312 16291

Frankowski J, Lorito M, Scala F, Schmid R, Berg G, Bahl H . 2001. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Archives of Microbiology. 176(6): 421426. https://doi.org/10.1007/s002030100347

Gilbert J, Fernando WGD. 2004. Epidemiology and biological control of Gibberella zeae /Fusarium graminearum. Canadian Journal of Plant Pathology. 26(4): 464472. https://doi.org/10.1080/0706 066040 9507166

Hall TA. 1999. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series. 41(41): 9598. https://doi.org/10.22202/ bc.2015.v1i1.1523

Hidayat Y. 2015. Isoalsi bakteri penghasil antibiotika dari cairan kantong semar (Nepenthes spp.) cagar alam lembah harau Sumatera Barat. Bioconcetta. 1(1): 2031.

Jeun YC, Park KS, Kim CH, Fowler WD, Kloepper JW. 2004. Cytological observations of cucumber plants during induced resistance elicited by rhizobacteria. Biological Control. 29(1): 3442. https://doi.org/ 10.1016/ S1049-9644(03)00082-3

Kanokratana P, Mhuanthong W, Laothanacareon T, Tangphatsornruang S, Eurwilaichitr L, Kruetreepradit T, Mayes S, Champreda V. 2016. Comparative study of bacterial communities in Nepenthes pitchers and their correlation to species and fluid acidity. Microbial Ecology. 72(2): 381393. https://doi.org/10.1007/s00248-016-0798-5

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution. 16(2): 112120. https://doi.org/10.1007/BF01731581

Kiran T, Asad W, Siddiqui S, Ajaz M, Rasool SA. 2015. Industrially important hydrolytic enzyme diversity explored in stove ash bacterial isolates. Pakistan Journal of Pharmaceutical Sciences. 28(6): 20352040.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution. 35(6): 15471549. https://doi.org/10. 1093/ molbev/msy096

Lane DJ. 1991. 16S/23S rRNA sequencing. Stackebrandt E, Goodfellow M, Ed. In: Nucleic acid techniques in bacterial systematics. Chinchester (UK): John Wiley and Sons Ltd. p. 115175

Lemanceau P, Alabouvette C. 1991. Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Protection. 10(4): 279286. https://doi.org/10.1016/0261-2194(91)90006-D

Liang YL, Zhang Z, Wu M, Wu Y, Feng JX. 2014. Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. BioMed Research International. 2014: 113. https:// doi.org/10.1155/ 2014/512497

Lin Z, Falkinham III JO, Tawfik KA, Jeffs P, Bray B, Dubay G, Cox JE, Schmidt EW. 2012. Burkholdines from Burkholderia ambifaria: antifungal agents and possible virulence factors. Journal of Natural Products. 75(9): 15181523. https://doi.org/10. 1021/ np300108u

Lu SE, Novak J, Austin FW, Gu G, Ellis D, Kirk M, Wilson-Stanford S, Tonelli M, Smith L. 2009. Occidiofungin, a unique antifungal glycopeptide produced by a strain of Burkholderia contaminans. Biochemistry. 48(35): 83128321. https://doi.org/ 10.1021/bi900814c

Maryani N, Lombard L, Poerba YS, Subandiyah S, Crous PW, Kema GHJ. 2019. Phylogeny and genetic diversity of the banana fusarium wilt pathogen Fusarium oxysporum f. sp. cubense in the Indonesian centre of origin. Studies in Mycology. 92: 155194. https://doi.org/10.1016/j.simyco. 2018.06.003

McCormick SP, Stanley AM, Stover NA, Alexander NJ. 2011. Trichothecenes: from simple to complex mycotoxins. Toxins. 3(7): 802814. https:// doi.org/10.3390/toxins3070802

Meliah S, Kusumawati DI, Ilyas M. 2020. Preliminary study of myxobacteria as biocontrol agents for panama disease pathogen, tropical race 4 Fusarium odoratissimum. In IOP Conference Series: Earth and Environmental Science. 457(1): 012060 https://doi.org/10.1088/1755-1315/457/1/012060

Mithöfer A. 2011. Carnivorous pitcher plants: insights in an old topic. Phytochemistry. 72(13): 16781682. https://doi.org/10.1016/j.phytochem.2010.11.024

Moran JA, Clarke CM, Hawkins BJ. 2003. From carnivore to detritivore? Isotopic evidence for leaf litter utilization by the tropical pitcher plant Nepenthes ampullaria. International Journal of Plant Sciences. 164(4): 635639.

Morohoshi T, Oikawa M, Sato S, Kikuchi N, Nato N, Ikeda T. 2011. Isolation and characterization of novel lipases from a metagenomic library of the microbial community in the pitcher fluid of the carnivorous plant Nepenthes hybrida. Journal of Bioscience and Bioengineering. 112(4): 315320. https://doi.org/10.1016/j.jbiosc.2011.06.010

Park JY, Oh SA, Anderson AJ, Neiswender J, Kim JS, Kim YC. 2011. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Letters in Applied Microbiology. 52(5): 532537. https://doi.org/10. 1111/ j.1472-765X.2011.03036.x

Ploetz RC. 2006. Fusarium-induced diseases of tropical perennial crops fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f.sp cubense. Symposium: Fusarium-Induced Diseases of Tropical Perennial Crops. 96(6): 653656. https://doi.org/10.1094/ PHYTO-96-0653

Prapagdee B, Kuekulvong C, Mongkolsuk S. 2008. Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. International Journal of Biological Sciences. 4(5): 330337 https:// doi.org/10.7150/ijbs.4.330

Reasoner DJ, Geldreich EE. 1985. A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology. 49(1): 17. https://doi.org/10.1128/ AEM.49.1.1-7.1985

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution. 4(4): 406425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Santana MF, Queiroz MV. 2015. Transposable elements in fungi: a genomic approach. Scientific Journal of Genetics and Gene Therapy. 1(1): 1216. https://doi.org/10.17352/sjggt.000003

Sari W, Wiyono S, Nurmansyah A, Munif A, Poerwanto R. 2018. Keanekaragaman dan patogenisitas Fusarium spp. asal beberapa kultivar pisang. Jurnal Fitopatologi Indonesia. 13(6): 216228. https:// doi.org/10.14692/jfi.13.6.216

Srinivas C, Devi DN, Murthy KN, Mohan CD, Lakshmeesha TR, Singh B, Kalagatur NK, Niranjana RR, Hashem A, Alqarawi AA, Tabassum B, Abd Allah EF, NAyaka C, Srivastava RK. 2019. Fusarium oxysporum f.sp. lycopersici causal agent of vascular wilt disease of tomato: biology to diversity-a review. Saudi Journal of Biological Sciences. 26(7): 13151324. https://doi.org/ 10.1016/ j.sjbs.2019.06.002

Sultan MZ, Park K, Lee SY, Park JK, Varughhese T, Moon SS. 2008. Novel oxidized derivatives of antifungal pyrrolnitrin from the bacterium Burkholderia cepacia K87. Journal of Antibiotics. 61(7): 420425. https://doi.org/10.1038/ja.2008.58

Sun JB, Peng M, Wang YG, Zhao PJ, Xia QY. 2011. Isolation and characterization of antagonistic bacteria against fusarium wilt and induction of defense related enzymes in banana. African Journal of Microbiology Research. 5(5): 509515.

Takahashi K, Athauda SB, Matsumoto K, Rajapakshe S, Kuribayashi M, Kojima M, Kubomura-Yoshida N, Iwamatsu A, Shiabata C, Inoue H. 2005. Nepenthesin, a unique member of a novel subfamily of aspartic proteinases: enzymatic and structural characteristics. Current Protein & Peptide Science. 6(6): 513525. https://doi.org/10.2174/138920 305774933259

Takeuchi Y, Chaffron S, Salcher MM, Shimizu-Inatsugi R, Kobayashi MJ, Diway B, von Mering C, Pernhaler J, Shimizu KK. 2015. Bacterial diversity and composition in the fluid of pitcher plants of the Genus Nepenthes. Systematic and Applied Microbiology. 38(5): 330339. https://doi.org/ 10.1016/j.syapm.2015.05.006

Vanlaera E, LiPuma JJ, Baldwin A, Henry D, De Brandt E, Mahenthiralingam E, Speert D, Dowson C, Vandamme P. 2008. Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov., and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. International Journal of Systematic and Evolutionary Microbiology. 58(7): 15801590. https://doi.org/10. 1099/ ijs.0.65634-0

Wang XQ, Liu AX, Guerrero A, Liu J, Yu XQ, Deng P, Ma L, BAird SM, Smith L, Li XD, Lu SE. 2016. Occidiofungin is an important component responsible for the antifungal activity of Burkholderia pyrrocinia strain Lyc2. Journal of Applied Microbiology. 120(3): 607618. https:// doi.org/10.1111/jam.13036

Yolanda H, Makashinda IM, Aprilia M, Sanjaya N, Gunawan H, Dewi R. 2015. Nepenthes rafflesiana pitcher liquid has antifungal activity against Candida spp. Mycoses. 33(2): 8390.

Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology. 67(5): 16131617. https://doi.org/10.1099/ijsem.0.001755

Published
2020-10-27
How to Cite
MeliahS., HardiyantiA. W., HaidaN., PutriG. A., & AinyE. Q. (2020). Penapisan Bakteri Penghambat Fusarium yang Diisolasi dari Cairan Kantung Semar (Nepenthes sp.). Jurnal Ilmu Pertanian Indonesia, 25(4), 627-635. https://doi.org/10.18343/jipi.25.4.627